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The following integro-differential equation is derived in[1}
WE=MWEU@E+a@V(—T (|§+BEN+ 60,

gon [—1,1] Ay -
in which a (8), B (), v (8), 8 (8), U(u+a), V (—T + B) are given
functions of their own arguments, X is a given parameter, and
T(u|§) is a singular integral of the form

1
1) dt
T(u{£)=9§ls,ul)zm, gon{—,1]. (0.1
-1

Here w(£) is a given function. The notation T {u | E) serves to em-
phasize that the given integral is not only a function of the point &,
but is also an operator in u(£). A large class of problems for plane
steady jet flows of an ideal incompressible fluid reduce to equation
(A). In this article, we discuss several methods for solving equa~
tion (A). The proposed methods are applied to jet flows with a
curvilinear wall and to jet flows of 2 heavy fluid with rectilinear
boundaries. The notation T(u) and T(u, w}£) are utilized for
the operator T (u| &) when it is necessary to emphasize its inde~
pendence of u(£) or to note dependence on w(t). Analogous
notation is also used for other operators encountered in the article.

In cases when @ (§) =1 and e (§) == V1 — E2, T (u|§) is denoted
by

1
1
J(uIE)=TS T de,

— 1
- E% L dt
rwip = Y22 20

= _lt—i—]fi::—t—“ ton {—1,1}, (0.2)

A part of the results of this article were reported at the Second
Congress on Theoretical and Applied Mechanics [2].

§1. Small parameter methods. The linearization

method. 1.1. Reduction of Eq. (A) to a functional equa-
tion in Banach space. We introduce the operator (£, £,

on {~1, 1])

g
Su)y=S@uB=1{70)U @E)+a)x
Y

g

X V(=T (u|t) +BE)de+ \d(t)dt . (1.1)
%

If the desired solution of Eq. (A) satisfies the con~
dition
u (Eo) = O!

then Eq, (A) can be written in the form

g, on [— 1,1}, (1.2)

u=28 @ =2=- (ul¥. (1.3)

Henceforth, it will always be assumed that condition (1.9) is
satisfied. When the operator S(u) is defined on some Banach space,
equation (1.3) will be a functional equation in this space. In
functional analysis, various methods of successive approximations
have been developed for solving such equations; thus it is natural
to apply these methods to equation (A) written in form (1.3). Since
the application of these methods depends on the space in which the
operator S(u) is written, it is necessary first of all to consider the
problem of the class of the desired functions.

1.2, The class of desired functions. Some bounds.
Let p(¢) be a positive continuous function given on the
segment [—1, 1] such that the function 1/p(£) is inte-
grable on the segment [-1, 1]. We shall use Cj to de-
note the class of functions defined on segment {~1, 1]
and which satisfy the condition that the product of any
function of this class u(¢) and p(£) is continuous on the
given segment, It is obvious that if we introduce the
norm

lul, = max |p (§u (9| 1<E<

the class Cp will be a Banach space. We shall use C}o
to denote the class of functions defined on the segment
[—1, 1] and satisfying the conditions: (1) any function
of this class u(f) satisfies condition (1.2); {2) the
product of u'(£) and p(¢) is continuous on the segment
[-1, 1]. It is not difficult to show that the class C},
will be a Banach space if we introduce the norm

Juf = max |p (8)u'(8)] U<E<),

When p(£) = 1, then the class C, coincides with the
known class C of continuous functions, and the class
¢l will be a closed set of the known class C! of con-
tinuously differentiable functions; in this special case,
the following notation will be used for the norms |ul,
and [lully:

|uly = max |u ()|, |uf, = max |&' (F)], A<ESY,

The introduction of the spaces Cp and C;) makes
it possible to obtain some bounds which permit justi-
fication of the methods presented below. We shall im-
pose the following condition on p(¢) and the function
w(¢) included in T(ul):

1

Tt)={ H|E yw @d.

—1

Here H{wi£, t) is a Fredholm~type kernel such that
the function H(wif, t)At) is absolutely integrable with
respect to t; however, the integral of the modulus of
this function is continuous for £, Then, we introduce
the quantities

B

1
b=1b(p, m)=maxS

—1

IH(‘DIE")

it (—i<asn

Let uft) € ¢! and the conditions imposed previous-
1y on p(¢) and w(¢) be satisfied; then it is not difficult
to show that the following inequalities hold:
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[T (W], <<

If we consider the integrals of the products p(£)u(t)
and p(¢)T(ulf), where p(¢) € Cp, then, making use of
inequality (1.5), it is easy to obtain the bounds

lulr << a(p)]uf,, b (p, w)|uf.. (1.5)

g
§ puat] <a@)ipl,lul,

0

1§ o7 ] <50

&

o) [pllul, (1.6)

It is obvious that the quantity a(p) for a given class C  can
always be computed with a g1ven accuracy. We cite the values
of of a(p) for different classes Cp

p(E)= VIEE,
2V2

p(EY=1, =Vi=E,
a(p)=2, a,

For these same classes, we cite expressions for quantities b(p, w)

o(E) =Vi—8, o) =1

b(p, @) =1, —i—(i—l—Zan) when p{E) =1

b(p, w)==4C /1, 3In2 when p(E)=V1—#
s ) —

bip, wy=— V=T, =ViLe

When computing b(p, w) in the case w{€) = 1, it was assumed
that u(g) satisfies the additional condition u(1) = u(-1) =0,

Here G is the Catalan constant, G = 0.915365594..., H is the
root of the equation t — Arth(1/t) =0, H = 1,199678402,.. It
should be noted that the quantity b(p, w) was computed to four
decimal places by Ya. I. Sekerzh-Zen'kovich in the case p (&) =
=@ (8) = V1 — £ [3]. ltshould also be noted that if the quan-
tity a(p) is introduced as the maximum of the integral included in
(1.4) for a given value of &, this quantity can be decreased. As
for the coefficients of equation (A), it will be assumed henceforth
that y(£) and §(&) belong to the class Cp, and a() and B(E) are
continuous functions. The solution of equation (A) will be sought
in class C;] in which the function p(£) is the same as in class Cp'

1.3. Basiec parametfers. Majorants. We shall intro-

duce some constant parameters characterizing Eq. (A).

First of all, we have the parameter A; it will be as-
sumed always that A > 0 (the latter is no restriction
whatever on A, since A can always be made a positive

quantity through selection of the function y(A)). In order

to introduce the remaining paramefers, we shall give
the concept of the majorant of Eq. (A).

Let the functions U(u + a(B)) and V(u + B(8)) be de-
fined on the segment ~t' = u = t' for any £ on [-1, 1]
and twice differentiable on this segment. Further, let
the positive monotonically nondecreasing differentiable
functions Up{t), V) (#» =0, 1, 2), given on the seg-
ment 0 = t < e, majorize the functions U(u + a/(£)) and
V(u + R(¢)) and their derivatives on the segment 0 =<
=t = t'in the following manner:

U (u+a ENI U (Jul),

IV” (—ut+BESTH (]ul),

(v=012 0<]u|< . (1.7)

Then we have for the variable 7 on [0, «)

”‘P (bs) - BU, (as) V, (bst)], (1. 8)

M) = [aUl (ast) Vg
Nt —o Lk

T
4-2abU, (as’'1) ¥,y (Bs"T) -

+ B (as't) Ve (b3'1)]

(@307 (a5') V,y (bs') +

(1.9

where a, b are constants of (1.4) and a g, ', 0, of
are parameters chosen so that the following condition
is satisfied:

MO =M 0 =NO =N (0 =1 (1.10)
will be called henceforth majorants of Eg. (A). In
this case, it will be assumed by definition that the
derivative M'(7) will be a positive and monotonically
nondecreasing function.

The relationship (1.10) includes four equations
which are readily solved for the parameters 7, 7',
o, o'. We shall make use of them to form two more

parameters ® and »' defined by the equalities

. IAT@VIR)+5), RS ICER IR
we e PEEEBEN e ST

It is easy to see that only five of the introduced pa-
rameters are independent and these can be taken asg
the bagic parameters. Henceforth, we shall take A,
7, %, 7', n! as the basic parameters. We note that
the paramefers w and »* will not depend on i if
6(E) = 0 or 5(£) = AG*(£).

1.4. The derivatives of S(u) Let us consider the
problem of the existence of the Frechet derivatives
of the operator S(u) and an estimate of their norms in
¢l space.

Theorem 1, Let the given functions included in
Eq. (A) satisfy the following conditions: (1) the func-
tions y(¢) and 6(§) belong to class C,; (2) functions
U@w-+a(E), V(u-+p(E) are defined and continuous
on the segment

—r e, t = mr, m = max {a, b) (1.12)
for any & on [-1, 1]. Then the operator S{u) will bring
the sphere Qp: 0 = fally = v of space C1 mto 01 If
in this case, the functions U (u + « (E))v (w8 (&)
are continuously differentiable in respect to u on the
segment [—1, 1] for any & on [—1, 11, then the opera-
tor S(u) has at every point @y a Frechet derivative

defined by the equality

5

4

ST w e+

%o

S (u)§) u*

AV (— T (u]t) + B () ur (6 — 1.13)

— U ) +a@)V (=T @) +BE)T w*it)]dt
In this case, the following bound holds for the norm
IIS'(u)Hp of the linear operator S'(u)u*:
18" ()], < (1.14)

< MM (Juls/ u(® e,

where M(r) is the majorant of Eq. (A) and ¢ is a pa-
rameter determined from Eqs. (1.10). If, however,



50 ZHURNAL PRIKLADNOI MEKHANIKI I TEKHNICHESKOI FIZIKI

the functions U (u + o (§), V (u + P (£)) are twice con-
tinuously differentiable with respect touon the segment
[-t', t'] for any £ on [-1, 1], the operator S(u) has a
second Frechet derivative in Qy:

SulByuru*t = ANy (I i) otV (—T{u)t) +

£ ey 1

SR Qe )=V (w(t) a2 @)V (=T (u|t) +
F RN O T (u** )+ u** () T (u*|t)) - U (u(t) +
FaNV (=T (@) + BT ([T (v )] de . (1.15)

and the following bound holds for the norm [i8"(u)ll, of
the bilinear operator S"(u)u*u**:;

15 <ar N (SE), wpeo,

7
]

(1.16)

where N(7) is the majorant of Eq. (A) and ¢' is a pa-
rameter determined from Egs, (1.10).

Proof. We shall establish, first of all, that the operator S(u)
operates from Q; into Cl. This means that if we regard the operator
S(u) = S(u{£) as a function of £, then § (u ) E €, if u (B E Q,.
We consider the product :

¢ &7 (W[ &) = kp (&} (v (BT (u (8) +
+ @ (BOW (=T (& + B E) -+ 8@E)].

The functions p (£)y (§) and p (£)3 (£) included in this product
are continuous, since y (§) and 8 (§) belong to class C, by condi-
tion. The functions 7 (u (&) -+ o (£)) and V (— T'(u| L) + B (E)) are
also continuous if « (5) &€, for, vn the one hand. the functions
U (u -t 2 G and 1 {« - B (%)} 2re by condition continuous ou the
segment e} | u| < mr for any £ on[~1, 1] and, on the other
hand, on the strength of inequalities (1.5), the functions u(&) and
T (u] ) are continuous on the segment [—-1, 11and ¢ < |u ]|,

[T ()| < rmy if w (8) & Q. Thus, the product p (8) §7:(u]§)

is a continuous function on the segment [—1, 1] and this means
that § (#]8) € CL

~ To vertfy the existence of the first and second Frechet deriva-
tives of the operator S(u) for which formulas (1.13) and (1.15) are
valid. it is sufficient to show that when the conditions imposed on
the functions &/ (« + e« (£))andV (u -+ P (E))are satisfied, the fol-
towing limiting equalities hold [6]:

1ol g AR AL .
fia :[1:3‘.0 e h‘g " i }:":f?_.v }f}z* “9 =0 (1.1

where u (§), h (), h* (E) are arbitrary functions belonging to Q,
the operators

A(u; By =8 (u-+h) — & (u) — Sk,

A (u by, B¥) = 8" (w+ KR — S (uh — S (u)hh*.

We shall prove the first of che timiting equalities (1.17). Let us
cousider a function of two variables f(z,y) = U (z + « EW (v +
-+ B (&), cominuously differentiable in the square —t' = x, y <t',
The following formula holds for this function:

flr+ Az, g+ Ay) — fla 1) = f " (z-+ 0Az, v~ BAy) Az +
+ £, (2 + 8Az, y - 0Ap Ay,
WKL, ="' 2,2+ Az, y,y+ Ay 1),

Let v (§) € Q, and & (§) € Q,; at the same time, « (§) + k (3)EQ,.
Then, on the strength of the inequalities (1.58), 0 < luly, {u + ki,
[T (u) 1y, VP () = T (W)}, < mr = 1'., Now, taking account of the
last inequality. if we use the finite increments r = w2 {£), d& = h(£),
y=T (u|5). Ay =T (A% in the formula, then transform the

operator A(u; h) with the aid of the expression obtained here, the
operator can be represented in the form

Alz,h) = A S Ty (u () 4+ Oh (1), —T (u]t)—OT (ht))—
F»h
— fo (e () =T (u | YR (O)—[fy (v (1) + OB (), —T (u]1) —
—OT R —F, (et} =T (| P}T(R1)}aL .
The following inequality can be readily obtained with the aid
of the bounds (1.6):

1A @ Bl /IR, <Ayl [alfy (w4 8k, —T (u) — 6T () —
—f W =T @)+ b{f, («+ 0k — T (0)— 6T (b)) —
— f, (e, — T (@il

Since the functions fy' (x, y) and fy' (x, y) are continuous in
the square —t' = x, y = t', the right-hand side of the obtained in-
equality tends to zero as {fhj — 0. The second limiting equality
of (1.17) is proved in a like manner.

We now differentiate equality (1.13) with respect to £, then
multiply by p{£}. We estimate the right-hand sides of the equality
by the absolute value, introducing the majorizing functions U, (¢),
V,(®), (v =0, 1} and making use of inequalities (1.5). Asa
result, we have

15" (| B2, < M1, [0y (o | ul,Wo bhul,) +
+ BU, @l ulV: Glulpllutl, u@®E L, .

It is easy to see from the obtained inequality that the bound
(1.14) holds for the norm of the operator §' (u) u*. Proceeding in
a like manner with the equality (1.15), we readily verify the

1.5. The linearized equation, Let P(u) = 0 be a non-
linear equation given in Banach space. Then the linear
equation P'(uy)(u, — u) = P(y,), where P'(uy) is a Fre-
chet derivative at the point u, is said to be linearized
at point uy or simply linearized, We write Eq, (1.3)
in the form

Pu=0, P=P@Y=u®—S5WuY.a.18)

The equation linearized at point 4,({) = 0 corre-
sponding to equation (1.18) and, consequently, to Eq.
(1.3) will be

P (0|8 =u(E)—S8 (0|8u="F (§),
F & =509,

where S'(01¢) is a Frechet derivative determined by
formula (1.13), If Eq. (1.19) is solvable with any
right side F(¢) and its solution can be represented in
the form

(1.19)

u (B =T (F} =T([8, (1.20)
where T'(Fl¢) is a linear operatdr, then the norm of
this operator |I'(F)l, will always be denoted by n,
henceforth, It is known that the quantity 7, should sat-
isfy the inequality

IT (F)e < ol £l . (1.21)

1.6. Majorant equations. The majorants M(r) and
N(7) determined by equalities (1.8) and (1. 9) will be
actual given functions if the majorizing functions U(t)
and V{t) are constructed for Eg, (A).

We shall consider, along with Eq, (A), several
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transcendental equations which contain the majorants
M(r) and N(7). Three of them contain the majorant
M(7),

T=%/Y M (v) O<r<oe), (1.22)
M) —\M @@ dr—w=0 (<<, (1.23)
0

T:(p('t),(p(‘r)EV(SAI(T)dT+%2>(O<1<co, v="M),(1,24)

0

and the two others, the majorant N(7),

t\N@ar—((N@ardr—w2=0 @p<r<o (1.25)

0

Sy
S e T
D

P =0, YpO=—1+v| iN(r)drdt—}—n’ﬁ)
4]

(0 < t<Coo, ¥ =AM (1.26)

We shall dwell on the problem of the existence of roots of
these equations, Since 1/M'(7) is a positive monotonically non-
increasing function, it is obvious that equation (1.22) has a single
root. It is not difficult to show that equations (1.28) and (1.25)
also have a single root, Indeed, if the left-hand side of equation
(1.23) is denoted by f(7), then it is easy to see that f'(r) = TM'(7)> 0,
when 7 > 0; at the same time f(0) = v < 0, which implies that there
exists one and only one point at which the function f(7) vanishes. In
precisely the same way, if the right-hand side of equation (1.25) is
denoted by f#*(7), it is easy to verify that f)(r) = TN(t) > 0 when
T > 0; at the same time, f, (0) = — #? <0, which implies the
existence of a single zero of the function F*(r). Depending on the
values of v and v', equations (1.24) and (1.26) can have two roots,
or also have no roots at all. The following lemma holds for the
least root of equation (1.24).

Lemma 1. If v<{vp= 1 /¢ (1) = 1/ M (t,), where 7, is the
root of equation (1.23) and ¢(7) is a function contained in the
right-hand side of equation (1.24), equaticn (1.24) has on the
segment [0, 7¢] the single root 7* to which the following sequence
converges:

W =0, T,=0(,) @=01..), (1.2

the rate of convergence of this sequence being characterized by the
inequality

Ty — T <H% Ty~ ho=A[UM (%) (n=10,1,...). (1.28)

Proof, We write equation (1.24) in the form v = f (), f(1) =
= tu/¢ (7). On differentiating, we find that
T
ro=(§a @+ —m @) et
0
Let 74 be the root of equation (1.23). If we analyze the ex-
pression for the derivative f'(7), it is easy to verify that the function
f(r) > 0 when 7 > 0 has a single maximum v = f(rq), thus, if
v = vy, then the straight line f = v intersects on the segment[0, 7]
the graph of the function f = f(7) at only one point (T, f (T4)),
T, < T, (when 1" =1y, the straight line f = v is tangent to the
curve f = f(7)). Consequently, the equation v = f(7) has the
single root 7° = 7; on the segment [0, 7], Now, we write equation
(1.24) in the form 7 = @(7). Since ¢’ (v) = vM (t) > 0, then,
following the method of L. V. Kantorovich and G. P. Alikov ([6],
Ch. XVIII, §1), it is easy to show that the sequence (1.27) con-
verges to 7*; at the same time, 7’ < 7", Considering the dif-
ference T, — T = @ (T4) — @ (7) and making use of the mean value
theorem, we have

Te — T = Q(UNT — V) T <V < Ty

or Ty — T, = VM (V) (T, — T,,).

From this, v, — 7,," < ko (T4 — ¥',,_,), since M(7) is an increasing
function and vM (ty) = hy. Applying the last bound to 7 — 1,
and continuing in this way, we ultimately obtain the bound for
(1.28). The lemma is proved.

The following lemma holds for the least root of equation(1.26).

Lemma 2. If

’
o

E]

) TV
v v = =

-1
e =) vou)

=)

where Ty’ is a root of equation (1.25) and ¢(7) is a function con-
tained in the right~hand side of equation (1.26), then equation
(1.26) has on the segment [0, 7¢'] the single root 7, to which the

following sequence converges:
Ty =0, 1“'rr!-l =T + K4 (Tn)

The rate of convergence of the last equation is characterized by
the inequality

(n=0,1,...), (1.29)

T — T, < () Ty

-t

Ty -1

By’ = Aoy’ (S N(r)dr) (n=0,1,...), (1.30)
0

It is easy to reduce the proof of this lemma to the proof of
Lemma 1 if we introduce the functions

mrm={Nma e @=vm+r,
0
by means of which equations (1.16) can be written in the form

T=g*(r), ¢ ()= (S M* (v + ).

1.7. The iteration method, The iteration method
is one of the most important methods for solving func-
tional equations. As applied to equation (A), this meth-
od consists in constructing the solution of Eq. (A)
with the aid of the sequence

U (8) =0, up (§) =8 (un |9 (n==0,1, ...y (1.31)

We can point out two methods for investigating the
convergence of the sequence (1.31) to the solution of
Eq. (A) and establishing the uniqueness of the obtained
solution. The following theorems substantiate the meth-
ods.

Theorem 2. Let the given functions included in Eq.
(A) satisfy the conditions of Theorem 1 and, in addi-
tion, the functions U(u + «(£)) and V(u + B(§)) are con~
tinuously differentiable in respect to u on the segment
(1.12) for any £ on [-1, 1]. Further, let M(7) be a
majorant (1.8) of Eq. (A), and 7° the root of Eq. (1.22).
Then, if the quantity r = r° = o7° included in inequality
(1.12) and

1 1

SO L VI (.32)
then there exists in sphere £ the single solution
u*(¢) of Eq. (A) satisfying condition (1.2). This solu-
tion can be obtained as the limit of sequence (1.31).
The rate of convergence of this sequence is charac-
terized by the inequality

| u¥ — s o << (RO 1%, B° = MM (1°),

(n=0,1,...). (1.33)
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Proof. According to Theorem 1, when all conditions imposed
on the given functions included in equation (A) are satisfied, the
operator S(u) operates on ,° in C Pl. and at each point of Q;°
there exists a Frechet derivative for which (1.14) holds. Let u(f)
and v(£) be two elements of ,°, Then, according'to the mean
value theorem [6]

IS () — 8 (@), <hu— o, sup |8’ (w40 (u ~ o))},

0<o<).

From this, making use of the bound (1.23) and taking account
of the fact that M(7) is a2 monotonically increasing function, thus
M (ul, [ 0) < M (v°), if u () € Q,., and the fact that, on the
strength of inequality (1.32), A° = MM (7°) < 1, we find that

S () —8 @L< e —of, i°<1,
if u(®), »¢ER. , (1.34)

Let u(g) be an arbitrary element of Q. Then, making use of
(1.30), (1.27) and the first relationship of (1.11), and taking into
consideration that 7° is a root of equation (1.12), we have

IS (@l <18 (@) ~ 8O, + 1S Oh, <k Ju— v+
-+ AU @V B) + 81, < hr° + wPhon =
= Br° + vo VM (M <A+ r° (1 — b9,

that is,

| S <, if u(f) € Qu,

It follows from inequalities (1.34) and (1. 35) that the operator
S(u) is the contraction in the sphere Q,° and transforms the sphere

Qe into itself, that is, S(u) satisfies the conditions of the well-
known theorem on the principle of linear contractions [5], which

then implies Theorem 2.

Theorem 3, Let the given functions included in Eq.
(A) satisfy the conditions of Theorem 1 and, in addi-
tion, the functions U(u + a(£)) and V(u + 8(£)) and con-
tinuously differentiable in respect to u on the segment
(1.12) for any £ on [—~1, 1]. Further, let M(T) be a
majorant (1.8) of Eq. (A), and 7 a root of Eq. (1.23).
Then, if the quantity r = ry = o7y included in inequality
(1.12) and

AL M (), (1.36)
then the unique solution u*(¢) of Eq. (A) satisfying con-
dition (1,2) exists in the sphere @, r, = ov,,where 7* -
is the least root of Eq. (1.24), This solution can be ob-
tained as the limit of the sequence (1.31), whose rate
of convergence is bounded by the inequality

[ — w0 << g™ 0T, kg = MM (7o),

(n=01,...). (1.37)

Proof. According to Theorem 1, there exists in Q0 a contipu-
ous arbitrary operator S(u) for which (1.16) holds. We introduce
the variable t = o7 and the function ¢, (£) = 69 (¢ / 6), where ¢ (7)
is a function included in (1.24). Since

x(0) = 09 (0) = ova? = | MU @)V (B) + 81,
Q') =@ (V) =vM (1),

then, making use of inequality (1.18), it is not difficult to establish
that

I8 (0 I, = 9 (0), 187(w)ll < ou’ (2

if  Juf,<t O<t<oo) (1.38)

that is, (according to the terminology accepted in functional analy-
sis [6]). the function ¢*(t) majorizes the operator S(u). After not-
ing that (1, 36) is equivalent to v Vo = 1/ M (1), we consider
equation ¢ = @, (), 0 < ¢ < o0. Onreplacing t = o1, this equation
is transformed into (1.24), thus, according to Lemma 1, it has the
single root 7o = 0Ty on the segment ¢, = 07,, where 7* is the limit
of the sequence (1.27).

Thus, the operator S(u) has a continuous derivative in the
sphere an, and the function ¢*(t) majorizes the operator S{u) on
the segment [0, ry]; at the same time, the equation t = ¢*(t) has
a single root t* on the segment [0, rg]. Thus, on the basis of a
theorem proved by L. V. Kantorovich ([6], Ch. XVIII, §1), it fol-
lows that the equation u = S(u), that is, equation (A) has the solu-
tion u* (k) in the sphere Qp; at the same time, the sequence (1.27)
converges to this solution. The rate of convergence of (1,27) is
bounded by the inequality

"u* — “n "p<t* - tn,

Taking into consideration that £, = o7y, f, = o7,’, where Ty’
are members of sequence (1.27), the last inequality can be written
in the form

borr = Px (tn) n=01,...),

lu* =, [, <O (% —7,) (r=0.1,...)

It is easy to obtain the bound (1. 37) from this, with the aid of
inequality (1.28). It remains for us to prove the uniqueness of the
solution. To do this, on the strength of the other theorem proved
by L. V. Kantorovich (ibidem), it is sufficient to establish the in-
equality @, (o) << ro, which is equivalent to the inequality ¢(7g) =<7,.
However, it is easy to see that the latter is implied by inequality
(1.36) since @ (Vo) = WM (') = TNM (75). The theorem is
proved.

Thus, the first method of investigating the convergence of the
iteration method and establishing the uniqueness of the obtained
solution consists in constructing the majorizing functions of equa-
tion (A), determining the parameters 1, %, and the majorant M(1),
then computing the root 7° of equation (1.22), and the inequality
(1.32) is verified. The second method differs from the first in that
the root 7 of equation (1.28) is computed and inequality (1.37) is
verified. It should be noted that the first method is an extension of
the method of A. I. Nekrasov well known in the theory of jets
[8, 4] to equation (A) by which a number of problems of detached
flows around obstacles with slight curvature have been solved.

It can be seen from the theorems which have been proved that
the iteration method can be realized only when the values of the
parameters A, 1, » are sufficiently small. However, the param-
eters n and » which depend on the properties of given functions of
equation (A) are actual given quantities in problems of the theory
of jets. On the other hand, the parameter A can tum out to be a
quantity which can be given in a whole class of problems and, con-
sequently, A can always be chosen so small (however, this will have
a completely definite physical sense) that the iteration method can
be applied to obtain a solution of equation (A). From this viewpoint,
the iteration method is the method of the smail parameter X in the
theory of jets.

To solve nonlinear functional equations, L. V. Kantorovich de-
veloped a method which is known as Newton's method or the method
of tangents in the case of ordinary algebraic or transcendental equa-
tions [6,7].

1. 8. The Newton-Kantorovich method, As applied
to Eq. (A), this method consists in constructing a so-
lution of Eq. (A) with the aid of the sequence

U ) =0, una (§) =un () —T (P (wn)]§),
(n=0,,...), (1.39)
in which T'(Pl¢) and P(u) are operators (1.18) and
(1.20). The justification of this method, with some

restrictions on the given functions included in Eq. (A),
vields the following theorem.
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Theorem 4, Let the solution of Eq, (1.18) be rep-

resented in the form (1.20) and the conditions of The-
orem 1 be satisfied, Moreover, let the functions U(u+

+ a(£)) and V(u + R(¢)) be twice continuously differen-
tiable in respect to u on the segment (1.12) for any ¢

on [-1, 1], N(7) be the majorant (1.9) of Eq, (A), and

Ty be a root of Eq, (1.26). Then, if the quantity r =
=)= U’TO included in inequality (1.12) and

-t

o

A<t/mo§ N (r)dr (1.40)
0

in the sphere Q,, r,’ = ¢'7,’, where 7} is the least
root of Eq. (1.26), there exists a unique solution of
Eq. (A) which satisfies condition (1.2). This solution
can be obtained as the limit of sequence (1.39) whose
rate of convergence is bounded by the inequality

Ty

Ju* — e, < (k') "2, b = Ao § N () d,
1]
(n=0,1,...) (1.41)

Proof. According to Theorem 1 there exists a second derivative

operator S{u) in the sphere Qry for which the inequality (1.16) holds.

We shall introduce the variable t = g'r and the function ¥, (¢) =
= ¢’y (¢ / ¢’), where ¥ (7T) is a function included in equation (1. 26).
With the aid of bounds (1.21) and (1.16), it is not difficult to
show that

Yy’ (0) = — 10,

= (1T (P (O, <% (0),
IT (P (uh ], <bs'” (2)

if Juf, <t 0<t<{oo.

Here | I' (P’ (u))[[p is the norm of the bilinear operator
T (P! (u)u*uss | ).

Let us consider equation ¥, (2) = 0, 0t <oo. Itis easy
to see that when t = o7 is replaced, this equation is transformed to
equation (1.26), and inequality (1.40) implies that
L5

Vv = (S N (r)dr)’f
0

thus, on the basis of Lemma 2, it has a single root /, = 0%,’, on
the segment [0, ry'], where 7, is the limit of the sequence (1.29).
Moreover, inequality (1.40) implies that

Py (10") < 1o

If we now turn to the two principal theorems of L. K, Kantoro-
vich on the convergence of Newton's method ({6]. Ch. XVIII, §1),
it is easy to see that the operator P(u) and the function ¢*(t) satisfy
all conditions of these theorems. It follows from this that equation
P(u) = 0, that is, equation (A) has a unique solution u*(£) in the
sphere Q; v at the same time, the sequence (1.39) converges to
this solution. The rate of convergence of the sequence is bounded
by the inequality

fu* — ILni!p Lt — Ly tor = I T ¥Px (t,)) (p=0,1,...),

Taking into consideration that t, = ¢’'7y’, f, = 0't,, where
n are the members of sequence (1.29), the last inequality can be
written in the form

[t =l <O (% — T,) (=01, ),

The bound (1.41) is easily obtained from this, with the aid of
inequality (1.30). This proves the theorem.

The proved theorem yields a method for investigat-
ing the convergence of the Newton-Kantorovich method

and establishing the uniqueness of the obtained solu-
tion, consisting in that majorizing functions are con-
structed for Eq, (A), the parameters n*, ®', and the
majorant N(7) are determined, then the root 7] of Eq.
(1.25) is computed, and inequality (1.40) is verified.
Like the iteration method, the Newton-Kantorovich
method is the method of the small parameter A for
problems of the theory of jets.

1.9, A lnear integro-differential equation. The basic diffi-
culty in practical application of the Newton-Kantorovich method
is in solving equation (1.18), that is, in finding the inverse operator
T'(F | £) of the operator P'(0|£)u. If the expression obtained from
formula (1.13) is substituted into equation (1.718) in place of the
derivative S'(¢0|E)u, then, after differentiating, it will take the
form

W (E) — ip B)u (B) - hg (BT (u|E) = 1 (),
£ on [—1,1], (1.49)

where

(@ (ENV B ), 7 (&) =y (B @ EW B &),
1B =My (B (@ &V B &) -8 (5).

P(E.) Yy (&)U

It is obvious that the solution of equation (1.1¥) is cquivalent to
the solution of equation (1.42) with condition (1.2). It follows
from this that if equation.(1.42) is solvable for any right-hand
side f(£) and its solution is represented in the form

u=Q(H=Q(|Y, (1.43)

where Q(f | £) is a linear operator, then equation (1.19) is solvable
for any right-hand side F (£) and its solution is representable through
the derivative F'(£) in the form

u=T(F[E = Q(FIE)

and the inequality (1.21) is equivalent to the inequality
e, <m|Fl

Methods for solving equation (1.42) and, consequently, equa-
‘tion (1.19) have not been developed as yet, and this hampers the
application of the Newton-Kantorovich method. In special cases,
however, when the solution of equation (1.42) can be represented
in a simple form, the Newton-Kantorovich method can be applied
successfully to solving equation (A). It is possible to propose
several methods for reducing equation (1.42) to ai equivalent
Fredholm equation. We shall present one of them. We shall re-
place in equation (1.42)

£
v @=1@)e(®), s =0 @@, e O=exp(— | par),
Em
g8 =710 ®.

Then we obtain the following integro-differential equation for
the function v(£):

v (E) + Ag (B)T (v, 51 B) = g (B),

the integration of which leads to an equivalent Fredholm equation

€ on [—1, 1]

1
v@+r (K@ svoa+e @, g onl—t 1,
-1

K(v, ) =

g £
sv)q(r *(F) =
S| (E)—gg(t)di

g

3

1,10. The linearization method. A method which makes it
possible to find the solution in closed form or in the form of some
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algorithm that enables one to find the solution with a predeter-~
mined accuracy is often called an exact method. From this view-
point, the iteration method and the Newton~Kantorovich method
are exact. The linearization method can be proposed as an ap-
proximate method for solving equation (A). It consists in that
solving equation (A) is replaced by solving equation (1.42). Then,
if the conditions of Theorem 4 are satisfied, the following bound
will hold:

Ju* — ue <o,

which follows from inequality (1.41). This bound makes it possible
to judge the error which is incurred in solving equation (A) by the
linearization method. For an effective solution of equation (A) by
the linearization method, it is necessary to have well developed
methods for solving equation (1.42).

§2, Jet flows with a curvilinear wall and jet flows
of a heavy fluid with rectilinear boundaries, 2.1, Jet
flows with a curvilinear wall. Let us consider a steady
jet flow of a weightless ideal incompressible fluid
whose boundaries congist of a finite number of recti-
linear walls, one curvilinear wall, and a free jet con-
verging with the wall, with no stagnation points on the
curvilinear wall. It is shown in reference [1] that de-
termination of such a flow is reduced to solving the
integro-differential equation

w' (B) = by (B)K (u () exp)— I (u]§)),
ton [—1,1] 2.1)
with the condition u(0) = 0. In the given equation, K(u)
is the so-called relative curvature [1] depending only
on the form of the curvilinear wall, y({) is a given
function depending on the geometrical and physical
properties of the flow, and A is a constant parameter.
By the method of construction, the quantity K(u) is an
even function, with K(0) =1, We shall assume further
that
K ()| <K K" (u)] < K,
K" ()| < K", (2.2)
When inequalities (2.2) are satisfied, the functions
U, () = K", V, () = et (v = 0, 1, 2) can be taken as
majorizing functions of Eq. (2.1). In this case, the
basic parameters of Eq. (2.1) will be

' b
n.—:[qf]p(aKO + bKy), u”=m,

W = 17|, (@K + 2abKy 4 BK,),

5
a?Ky" 4 2abKy + b*Kg °

%n'? =

and the majorants will be the exponential functions

M(x) = ¢, N =€, 2.3)

with 0 = ¢' = 1/b. The majorizing equations (1.12)
and (1.16) take the following form after the majorant
(2.5) is substituted in them:
L 1)=1—ue =0,
L=t -1+ —xd)e7™=0,
Livi ;o) =1 —v(ee— 14 %% =0,
v=AM; L (7)) =0,
Ly(v,#5v9)=1 —v (€ —1—1+x%%) =0,

v = n'neh, 2.4)

Equation (2.1) corresponds to the linear integro-
differential equation

u' (8 — A (B) (u
F(8) =M (5

&) =7 (®:

gon [—1, 1]. 2.5)
The roots of equations L (x, ©) = 0, L, (x, 1) = 0,
L, (', t) = 0 will be denoted henceforth by 7°, 7, 77,
respectively; and the least roots of equations L,(v,
#; 7)=0and Lg(v', ®'; 7)=0 by T, and 7L,
We now apply Theorems 2-4 to Eq. (2.1). Then it
is easy to see that when the value of the parameter A
is sufficiently small, it is possible to obtain a solu-
tion of Eq. (2.1) by the iteration method or the New-
ton-Kantorovich method. Thus, the following asser-
tions hold.
1°, Let the function y(£) belongs to class Co and the
relative curvature K(u) be continuously differentiable
on the segment t' <{ u < ', ' = mr, m = max (a, b).
Then, there may be two subcases.
MIr=r=71/band A<<1/n (¢° + %), then
there exists the unique solution u*(¢) of Eq. (2.1) in
the sphere Q2,0 which satisfies condition u(0) = 0. This
solution may be obtained as the limit of the sequence

uo (§) =0,

Y () K (un(t)) exp (— I (ual1)) dt,

0

I

Unt1 (g) =}

I,

(n=0,1,..), (2.6)
whose rate of convergence is bounded by the inequality
| w* — unlle << (B)7°,  B° = ne®

(n=0,1,...), (2. 7)

Ry r>rp=1/b and A <1/ mew, then there exists
the unique solutmn u*(¢) of Eq. (2.1) in the sphere Qpx*
which satisfies the condition u(0) = 0. This solution
may be obtained as the limit of sequence (2.8) whose
rate of convergence is bounded by the inequality
Ry = Ane®

¥ — unfo < 2g™ 1o (n=01,.). 2.8)

2°, Let the solution of Eq. (2.7) be represented in
the form (1.43) and let the function y(£) belong to
class Cp, and the relative curvature K(u) be twice
continuously differentiable on the segment ¢’ < u < ¢,
' = mr, m = max (a, b). Then, if r>ry =1//b
and A<{1/ n'n, (e — 1), there exists the unique solu-
tion u*(¢) of Eq. (2.1) in the sphere Q»,, 7, =17, /b
which satisfies the condition u(0) = 0.

This solution may be obtained as the limit of se-
quence (1.39) in which T (7| &) = Q (F'|§), where
Q(f1£) is a solution of Eq. (2.5), and P(ul{) is an op-
erator of the form

|3
Pul®)=u®—n v K @u@)exp(—1I@|0)d.
Eo

In this case, the rate of convergence of this se-

quence is bounded by the inequality
fu* — unle < (R')Pry's Ry = An'ng (67 — 1),

(n=04,..) . 2.9)
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2.2, Jet flows of a heavy fluid with rectilinear
boundaries. We shall consider flows of a heavy fluid
whose boundaries consist of a finite number of recti-
linear solid walls and one free surface. As shown in
reference [1], the determination of such a flow is re-
duced to solving the integro-differential equation

w (8) = Ay () sin (=T (u] §) + B (£)) exp (— 3u (¥)),

Eon[~1,1] (2.10)

with condition (1.2). In the given equation, Ais a con-
stant parameter, y(¢) and R(¢) are given functions
which depend on the geometric and physical properties
of the flow.
It is easy to see that the functions
U, (£} = 3ve™,

V.t)= 1 (v=0,1,2)

can be taken as majorizing functions of Eq. (2.10).

Table 1

x ® g
0.0 0.0 0.0
0.4 0.0953 0.1350
0.2 0.4825 0.2592
0.3 04,2630 0.3738
0.4 0.3378 0.4805
0.5 0.4078 0.5801
0.6 0.4735 0.6737
0.7 0.5355 0.7620
0.8 0.5943 0.8454
0.9 0.6502 0.9246
1.0 0.7035 1.0

In this case, the basic parameters of Eq. (2.10)
will be the quantities

, 3ajysinB]
n= vl @atd), g
, Qat bRl g J@lrsingl,
W KOS e,

and the exponential functions (2. 3) will be th‘e major-
ants; at the same time, o = o' = 1/3a, The majorizing
equations, consequently, are of the form (2.4).
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Equation (2, 10) corresponds to the linear integro-

differential equation

uw' (&) + Ar (8) [3 sin B (B)u (E) + cos B (B (u|§)] = f (B).
FE =M@ sinpE, ¢

7

on [— 1, 1]. 2.11)
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As before, we shall denote the roots of Eqs. (2.4)
by t°, T, T, T4 T, I we apply Theorems 2-4 to Eq.
(2.10),. it is easy to see that the iferation method and
the Newton-Kantorovich method can be applied to this
equation when the value of the parameter A is small.
Thus, the following assertion holds.

1°. Let the function y(£) belong to class C o and the
function F(¢) be not continuous on the segment {—1, 1].
Then we have two subcases: i

M A< 1/ n (e + xer™), then there exists the
unique solution u*(¢) of Eq. (2.10) in the sphere .,
r° = 1° [ 3a which satisfies condition (1.2). This solu~

tion can be obtained as the limit of the sequence

Uo(B)=0, tna (&) = A\ v () sin(—T (ua]t) +

EO
+B() exp (— 3ua (¥)) dt,

whose rate of convergence is bounded by (2.7), where
r, =1,/ 3a.

(n=0.1,...), (2.12)

w8 48 08 07 a8

"ELTI
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e 03

4 22
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7 Fig. 3 '

(2) If A < 1/ ne”, then there exists the unique solu-
tion of Eq. (2.10) in the sphere Q. , r, = 7, / 3¢ which
satisfies condition (1.2), This solution can be obtained

Table 2

Values of 7,

v
X 04 0.2 0.3 0.4 9.5 0.8 0.7 0.8 0.9
0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.0 0.0 0.0
0.1 0.0014 0.0025 0.0043 0.0067 0.0100 0.0152 0.0240 | 0.0439
0,2 0.00%4 0.0100 0.0472 0.0269 0.0408 0.0630 0.1072
0.3 0.0100 0.0226 ¢.0389 ¢.0613 0.0946 0.1537
0.4 0.0178 0.0402 0.0696 0.1109 0.1765 0.3335
0.5 0.0278 0.0630 0.1098 0.1779 ©.2998
0.8 0.0404 0.091t 0.1601 0.2853 0.5265
4.7 0.0546 0.1245 0.2213 0.3822
0.% 0.0714 0.1635 0.2949 0.5471
0.9 0.0905 0.2083 0.3330
1.0 0.1448 $.2592 0,489
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Table 3
Values of 'r:k
v . .

» 0.1 0.2 0.3 0.5 0.6 0.7 0.8 0.9
0.0 0.0 0 0.0 0. 0.0 0.0 0.0 0.0 0.0
0.1 0.0010 0.0020 0.0030 0. 0.0050 0.0060 | 0.0070 | 0.0080 | ©.0090
0.2 0.0040 0.0080 0.0120 1, 0.0201 0.0242 | 0.0283 | 0.032% | 0.0386
0.3 00090 0.0180 0.0271 0. 0.0455 0.0549 | 0.0845 | 0.0743 | 0.0843
0.4 0.0180 0.0321 0.0483 0. 0.0817 | . 0.0990 | 0.1170 | 0:1357 | 0.1585
0.5 0.0250 0,0502 0.0759 0.1022 0.129% 0.1578 | 0.4382 | 0.2211 | 0.4121
0.6 0.036( 0.0725 0.1099 0.1486 0.1896 0.2337 | 0.2828 | 0.3399
0.7 0.04 990 0.1506 0.2050 0.2641 0.3308 | 0411z | 0.5236
0.8 0.0642 0.1298 0.1983 0.2723 0.3557 0.4576 | 0.6083
0.9 1.0813 0.1649 0.2535 0.3520 0.4700 0.6398
1.0 0.1005 0.2045 0.3168 0.4465 0.6191

as the limit of the sequence (2.12), whose rate of con-

vergence is bounded by (2.8), where r, = 7, / 3a.

2°, Let the solution of Eq, (2.10) be represented
in the form (1.43) and let the function y(£) belong to
class Cp, and the function £(¢) be continuous on the
segment [~1, 1]. Then, if A <71/ %'y, (v — 1), there
exists the unique solution u*(¢) of Eq. (2.10) in the
sphere Q,., r,’ = 7,’ [ 3a which satisfies condition
(1.2), This solution can be obtained as the limit of
sequence (1.39) in which T (F|§) = Q (F' | &), where
Q(f1£) is a solution of Eq, (2.11) and P(ul¢) is an op-
erator of the form

E
Ep

P (u|8) =u(8) — A\ v (t) sin(—T (u]£)+ (&) exp(—3u () dt,

In this case, the rate of convergence of this se-
quence is bounded by inequality (2.9), where r,’ =
=1, [3a.

2.8, Computation of the roots of the majorizing equations.
The application of the methods set forth here to the two classes of
jet flows considered above depends on the satisfaction of inequali-
ties which contain quantities that depend on the roots of the major-
izing equations. However, it is easy to see that the majorizing
equations are of the very same form (2. 4) for flows with a curvi-
linear wall and for flows of a heavy fluid, it being sufficient to
take the four equations

L, v=0 L x71)=0,
Ly (v, % 1) = 0, Lgv', w5 v) =0,

Since the equation Ly(®',7) = 0 can be derived from the equation
Li(%. 1) = 0 by replacing w by ®'. Thus, in order to obtain the roots
of all majorizing equations, it issufficient to be able to compute
the roots of equations {2.18). In this connection, we present tables
of these roots (refer to Table 1 where 7° is the root of the equation
T =% exp (—Y; 1), and 7, is the root of the equationt=1 — (1 —
—x?) exp (—T); Table 2, where 7 is the least root of the equation
T=v (eXp T — T - »?); Table 3, where r** is the least root of the
equation v=v'(exp T—1'— 14} %'?), also the graphs of Figs. 1-3, -
which makes it possible to approximately find the roots of equations
(2.13)). °

In conclusion, we note that it will be necessary to develop ef-
fective exact and approximate methods for calculating the inte-
grals (0.1) and (0.2) to effectively apply these methods to the jet

problems considered here. The problem of exact calculation of
integrals (0. 2) is discussed in reference [9].. In some cases, one
can make use of the formulas of reference [10] for approximate
computation of the integrals (0.2).
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